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From phenomenological thermodynamics to the canonical 
ensemble: I1 
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PO Box 4, Canberra, ACT 2600, Australia 

Received 19 July 1982 

Abstract. A general assumption made in a previous paper is modified by the elimination 
of the metrical entropy in favour of empirical entropy. Without reference to absolute 
temperature or metrical entropy, one then arrives at a generic form of the canonical 
probability in phase in which temperature does not occur. It is argued that this is as it 
should be if one looks upon the canonical ensemble as merely being the representative 
of a system in thermal equilibrium with its surroundings. One motivation for this work 
is to take a view of ‘statistical mechanics’ which does away with probabilistic notions 
altogether. 

1. Introduction 

A previous paper (Buchdahl 1979), hereafter referred to as A, was devoted to an 
attempt to answer the following question: to what extent can the familiar explicit 
form of the canonical probability in phase, 

, (1) ( F - H ) / k T  d = a e  

be deduced, granted merely basic generic notions of an appropriate statistical formalism 
and the overriding demand that the laws of phenomenological thermodynamics be 
accommodated by it, the validity of these laws being taken as unquestioned. Whilst 
reference has just been made to ‘probability in phase’ and to ‘statistical formalism’, 
I prefer to think of the use of these terms here only as conventional: they should in 
the first instance by taken as synonymous with ‘normalised measure-density function’ 
and, say, ‘phase-mean formalism’, respectively. Concomitantly the first of these is 
simply left uninterpreted, whilst the term ‘phase-mean’ replaces ‘ensemble mean’; it 
is then seen as a quantity defined by the prescription of equation (7) of A and reference 
to ensembles is thus also eliminated. The avoidance of all reference to probabilistic 
connotations (see A, § 8) harmonises with a view of phenomenological thermodynamics 
which I have expressed elsewhere (Buchdahl 1981), namely, that it functions as a 
metatheory, the primary function of which is to act as a selection principle for 
‘mechanical theories of heat’. 

Setting conceptual questions aside, I return to the substance of A, knowledge of 
the content of which will be taken for granted so that undue repetition may be avoided. 
By the same token it will be convenient to retain the language used in A rather than 
that advocated above; if desired, a translation can easily be effected. Granted the 
rules A(4), it was argued previously that the function w of which the metrical entropy 
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S was to be the ensemble mean must be determined by the ensemble K as a whole; 
and since 4 fully characterises K and no other ‘collective’ phase function is available, 
one is led to the assumption (B): w depends upon the phase through 4 alone. Taking 
the full content of the second law into account, it was possible to conclude that 

where a ( S )  and k ( S )  are functions of S alone, subject to the mutual relation Sd(k-’) - 
d(ln a) = 0, k(S)  itself remaining unknown. (In this context, the mutual diathermic 
equilibrium of distinct systems KA and KB in diathermic contact with the same 
thermostat-after the fashion of § 6 of A-is, of course, not contemplated; see also 
§ 4 below.) 

It was argued in § 7 of A that the appearance of k(S)  was tantamount to the 
‘spontaneous’ appearance of an empirical entropy function in the formalism, and that 
in the first instance some (unspecified) empirical entropy s should appear in place of 
the metrical entropy S ;  but that it was not clear how the appearance of S and T in 
the argument leading to an appropriate form of 4 might be avoided altogether, if, 
indeed, it could be avoided at all. The present note addresses itself to the resolution 
of the unsatisfactory, somewhat confused, state of affairs just outlined. 

2. Remarks on the idea of the canonical ensemble 

In phenomenological equilibrium thermodynamics a (closed standard) system K in 
thermal equilibrium with its surroundings I? occupies a central position, its quasistatic 
behaviour being governed by the pivotal relation? 

Correspondingly, in the statistical theory an equally prominent position is occupied 
by the ensemble representing such a system, that is, by the canonical ensemble. There 
is room here, however, for a certain ambiguity. I understand a canonical ensemble 
to be the representative of a system in equilibrium with a (time-independent) heat 
reservoir; cf Tolman (1938). There is here no mention of temperature, absolute or 
empirical. Some authors, however, more or less explicitly specify the temperature T 
of the reservoir; e.g. Pathria (1972). What lies behind this difference is this: only 
when the temperature is not mentioned does the canonical ensemble not presuppose 
the zeroth law, i.e. the transitivity of the relation of mutual thermal equilibrium of 
pairs of systems. It suffices to know merely that thermal contact with a reservoir 
imposes one condition upon the values of the coordinates of K and jointly to give 
preference to the view that the canonical distribution should in the first instance 
make no reference to temperature at all. A corresponding situation exists in the 
phenomenological theory when one prefers the view that the second, first and zeroth 
laws should be introduced in turn in that order rather than in their traditional order; 
see Buchdahl (1975). In particular, without drawing upon the zeroth law, one can 
still infer that there exist functions 8 and s of the coordinates of K such that 

dQ = 8 ds. (4) 
t When an ‘equation’ A =  B constitutes a defining relation for A or B it is written A : = B  and A=:B,  
respectively. 
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Consistency demands that to achieve the purpose of A one should initially set out to 
accommodate (4) rather than (3), if one is to deal appropriately with the consequences 
of equilibrium between one system and one other system. 

3. The empirical Helmholtz function P 

In A it was necessary to appeal to the minimality of the Helmholtz function F (:= U - 
TS) in equilibrium. Now, however, one has to manage without introducing T so that 
F is no longer available. To overcome this hiatus, suppose that some particular 
empirical entropy function s has been chosen so that the functions 0 and s are both 
known. Amongst the coordinates x of K there is one non-deformation coordinate, 
x,, say. (In A this was taken to be T, but, of course, that is not to be done here.) As 
a matter of convenience, go over to a new non-deformation coordinate, taking this 
to be s. Should 0 happen to be independent of s, one goes over to another empirical 
entropy S which is any good, monotonically increasing function of s. 

Now contemplate the function 

9:= U - os, ( 5 )  

which, as a matter of convention, may be called the ‘empirical Helmholtz function’. 
Then, bearing (4) in mind, 

One needs to consider transitions characterised by the constancy of 8. It is whimsical 
but expedient to call such a transition ‘isothetic’. (The condition that 8 be not 
independent of s ensures that in an isothetic transition the deformation coordinates 
are still freely variable.) 

By inspection of (6) ,  the work done by K in a quasistatic isothetic transition is 
balanced by the decrease of 9, just as in the customary isothermal transition it is 
balanced by the decrease of F. Again, inspection of familiar arguments leading to 
the usual conclusion that for a transition between given states AS 2 dQ/T reveals 
that equally well 

As 2 1 d o / @ ,  (7) 

and concomitantly stable equilibrium is subject to the conditions 

S 9 = 0 ,  S 2 9 > 0 ,  (8) 

granted that all neighbouring unnatural states (Buchdahl 1966) are characterised by 
fixed values of the deformation coordinates and of 8. 

4. The canonical probability in phase 

In view of (8), one is now in a position to proceed exactly as in A provided one adopts: 

Assumption (B’). The function w of which the empirical entropy s is the ensemble mean 
depends upon the phase through C#J alone. 
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This is assumption B except that empirical entropy replaces the metrical entropy. 
A virtue has been made out of necessity, for what was said in support of assumption 
B in no way justified its reference to S.  On the other hand, one can talk about 
empirical entropy without any reference to the zeroth or for that matter, the first law. 

The direct counterpart to A(25) is here 

{[H - 6(q5w)']&$ + I3q5SXw} d r  = 0. (9) 

Thereafter everything goes through as before in 0 0  5 and 4 of A, save for the formal 
change of replacing T by I3 and S by s everywhere. One therefore ends up with the 
result 

7 (10) 4 = a (s) e(SS-H)lBk(s) 

where k ( s )  is an unknown function of s and 

d(ln a ) /ds  = sd(k-')/ds. (11) 

By means of ( l l ) ,  equation (10) may be rewritten as 

where a1 is a (redundant) constant of integration. Equation (12) has exactly the same 
generic form as A(39): but this time the argument which leads up to it makes no 
reference to S or T. 

To take (12) into the usual form of the canonical probability in phase, one must 
of course bring in the zeroth law. In effect, one can then set i'3 = T and having thus 
returned to A(29) it only remains to demonstrate the constancy of k ( s ) ,  say by the 
method of 0 6 of A. 

It should be remarked that no reference to Liouville's theorem has been made. 
One can, of course, verify in retrospect that q5 satisfies it. 

5. Concluding remarks 

An unsatisfactory aspect of assumption B, namely its reference to metrical, rather 
than empirical, entropy has been eliminated. To this extent the argument leading 
from the phenomenological theory to the canonical ensemble is made more secure. 
To achieve such greater security is no idle aim, bearing in mind the purpose of A as 
outlined in 9 1 above. It may be added that the ascription of a metatheoretic function 
to the phenomenological theory and the adoption of a prescriptive, non-probabilistic 
stance which goes with it are generally speaking not contemplated when the relation- 
ship between the parameters of a system regarded as mechanical and the parameters 
of the same system regarded as thermodynamic is examined; see, for example, Lavis 
(1977). At any rate, the path to the canonical ensemble here pursued seems much 
to be preferred to the kind of argument advanced for instance by Lindsay and Margenau 
(1957). 
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